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Abstract A new approach to calculating x-ray dynamical scalkring in Bragg diffraction 
geometry in ideal superlaltices has been proposed. The method is based on the Bloch lheorem 
and effectively lakes advanlage of lhe periodic properties of superlanioes. 

1. Introduction 

X-ray diffraction is widely used for structural characterization of semiconductor superlattices 
(SLS). By means of x-ray diffraction it is possible to determine such parameters of the SL 
as the period and the average lattice parameter [1-5]. 

A kinematical approximation which provides a simple and obvious description of 
diffraction scattering is widely used for analysis of the x-ray rocking curves from SLS [6]. It 
provides, however, overestimated low-order satellite intensities and is not applicable in the 
neighbourhood of the substrate Bragg peak. One could take into account dynamical effects 
within the framework of the conventional approach based on the solution of the non-linear 
first-order differential equation for the scattering amplitude [7]. This method, however, 
does not take into account such characteristic features of SLS as the periodic dependence on 
the structural and scattering parameters. Below we present a method of calculation of the 
dynamical x-ray scattering in SLS which effectively takes advantage of the above-mentioned 
property. 

We shall start with the conventional Takagi-Taupin [7,8] equations for the refracted 
wave amplitude 00 and the diffracted wave amplitude Dh: 

. (1) 

Here k = 2 z / h  is the wavevector; the asymmetry factor ,9 = yo/lyhl (yo and yh are the 
directing cosines of the refracted and diffracted beams, respectively); ,yo, x k  and xj, are the 
Fourier components of the crystal polarizability; the parameter (Y = -2sin(24~,)((B - r$J 
specifies the angular deviation from the exact Bragg angle BBJ; 4(z) = h u(z) (h  
is the reciprocal-lattice vector); the displacement of atomic planes is given by U@) = 
- 1,’ ds(Ad/d) (s )  (Ad /d  is the lattice space modification with respect to crystal substrate). 

xo(z) xi (2) exp[i4(z)l i [ 21 = & [ -bxk(z)exp[-i4(z)l -[xo(z) -4fi ] [ 21 

Afier the substitution 4 -+ &exp[$(z)] the set (1) transforms to 
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where 
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= (2~0/kB)(d/h)W) = - (2~0/kB)(2~/ /d) (Ad/d) (z ) .  (3) 

In an SL the coefficients of the matrix of the set (2) are periodic functions of the 
coordinate z. In accordance with the BIoch theorem [9], fundamental solutions of such a 
set for an arbitrary value of z must satisfy the following equality: 

D 0 . k  t T) = PDo.&) (4) 

where T i s  the period of the SL and p is called a multiplier [lo]. 

2. SL with abrupt interfaces 

Let us consider x-ray diffraction in an SL with abrupt intelfaces between constituent layers. 
For simplicity first we restrict ourselves to the case of an SL each period of which consists of 
two layers. The thickness of the first layer is denoted by t, and the thickness of the second 
layer by T - t .  Within each layer, Fourier components xi‘), xt) and xf) of polarizability 
and Fourier components (Ad/d)“)( i  = 1,2) of lattice mismatch are assumed to be constant. 

The general solution of (2) in the first layer (0 < z < t )  may be written in the following 
form: 

are the eigenvalues of the matrix of (2) in the interval 0 < z < t and 

are the relevant column eigenvectors, and o and 6 are constants. 
It is convenient to represent solution (5) in the matrix form 

The columns of the matrix QI(z) an formed by the eigenvectors Djli with appropriate 
multipliers: 

(9) Q ( z )  = [D?) exp(ikcl”;zyo), D~”exp(ikc~)$yo)]. 

D(z) = OD:*’ exp(ikcY’lzy0) t uDf’ exp(ikcf’ $yo) 

In the second layer (t < z 6 T), 

(10) 
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or. in the equivalent matrix form, 

where 

At interface between layers (z = t )  the amplitudes of the rc 
waves must match 

In matrix notation the Bloch condition (4) has the following form: 

By expressing the vector from equation (13) as [:I 
and substituting (15) in (14), we obtain the following relation: 

P [ y ]  = Q;’(o)Q~(r)Q;’(r)Ql(t) [ T] . 
In equations (15) and (16) and hereafter, Q-I  denotes the inverse of the manix Q. 

From (16) it follows that p is the eigenvalue of the 2 x 2 matrix Q;’(O)Q2(T)Q;‘ 

the eigenvalues and the relevant eigenvectors of ( t )Q l ( t ) .  We denote by pl.2 and 

the above-mentioned matrix. Then the general solution of (2) at (n - l)T < z < (n - l ) T + t  
(n = 1.2.3, . . .) may be represented in the following form: 

[:I1,, 

where A and 5 are constants. 
At (n - l )T + t < z < nT (n = 1,2,3,. . .), 
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Equations (17) and (18) seem to be convenient €or the analysis of the diffraction wave 
fields in the SL. The constants A aqd B in them could be determined from the amplitude 
continuity equations at the SL-substrate and SL-vacuum boundaries. At the entrance surface 
of the substrate the wave field may be represented as 

where Dor is the amplitude of the wave transmitted through the SL wave, and R is the 
reflection amplitude of the substrate which can be easily calculated within the framework 
of the conventional dynamical theory [ I  I]. 

I f  the SL is composed of N periods, then by taking into account (17) the continuity 
condition at the boundary with the substrate may be written as follows: 

At the boundary with the vacuum the continuity condition is 

where Eo = I is the amplitude of the wave incident on the SL and Eh is the amplitude of 
the diffracted wave under study. Equations (21) and (22) form the set of linear equations 
of fourth order with respect to the quantities A,  B, Dos and E h  and allow one to obtain a 
complete solution of the problem of diffraction scattering of x-rays in an SL. 

It is possible to show that the modulus of one of the eigenvalues p is always less than 
unity while the modulus of the other always exceeds unity. Thus, if x-ray diffraction takes 
place in a semi-infinite SL (N = w), then it is necessary to keep, in equations (17) and 
(IS), only one term for which 

IPI < 1. (23) 

Condition (23) provides damping of the wave fields in the bulk of the SL. In this case the 
continuity condition (22) at the boundary with the vacuum has the following form: 

The x-ray rocking curve calculated from a semi-infinite absorbing SL is depicted in figure 
l(a). Figure l(b) demonstrates the differences between the dynamical and kinematical 
approximations when calculating the 'zero' peak of the above-mentioned SL. 

The formulae obtained allow generalization of the case when each period of the SL 
contains not two but m layers with thicknesses ti (Cy=I ti = T). Then instead of (16) we 
have the following relation for determination of p and eigenvectors of the first period of 
the SL: 
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Figure 1. (a)  X-ray rocking curve calculated from a semi-infinite SL wilh the period T = 230 A. 
(b )  ‘Zero’ peak of a semi-infinite SI. in a linear scale: -, dynamical approximation: 
.... , kinematical approximation. 

3. SL with continuously varying characteristics 

Let us consider now the x-ray diffraction in an SL whose structural characteristics ,yo, 
xh and ,yj and lattice mismatch A d / d  are continuously varying periodic functions of the 
coordinate z. This occurs for example for SLS whose interface between constituent layers is 
not atomically abrupt. In this case it is impossible to consbuct exact analytical expressions 
for the wave fields in the SL. 

Let us denote the amplitudes of the wave fields at the entrance surface of the SL as 

[ Dh(o)] Do(o) . From the linearity of the initial set of differential equations (2). it follows that 

where M is the 2x 2 matrix depending only on the scattering angle, structural characteristics 
and value of T .  For determination of the elements of the matrix M it is necessary to 
solve equations (2) twice by numerical methods or perturbation techniques in the interval 
O < z < T .  

In fact, if we set 

then it is easy to see that 

If 
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then 

Miz  = Do(T) Mu = Dh(T) .  

The Bloch condition (4) has the following form: 

i.e. p is the eigenvalue and [E$;] is the eigenvector of the matrix M. Further operations 

are obvious; they coincide with those described in the previous section. 

4. Conclusion 

A new method based on the periodic properties of an SL to calculate x-ray dynamical 
diffraction has been proposed. In comparison with the existing methods the new approach 
has some advantages as well as deficiencies. Probably the most interesting feature of the 
new approach is that computing time is independent of the number of periods in the SL The 
proposed method is also applicable to x-ray grazing incidence diffraction on the SL [12]. As 
for deficiencies, i t  is less simple and illustrative than the kinematical approximation. It is also 
not clear at the present stage whether this method could be modified to take into account the 
random variations in the SL period, concentration profiles, etc. Random variations, however, 
reveal themselves mainly in high-order satellites where dynamical effects are negligible and 
it is easier to use the kinematical approximation for analysis [13]. 
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